The Dual Role of miR-186 in Cancers: Oncomir Battling With Tumor Suppressor miRNA
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNAs which regulate gene expression at post-transcriptional level. Alterations of miR-186 expression were demonstrated in numerous cancers, shown to play a vital role in oncogenesis, invasion, metastasis, apoptosis, and drug resistance. MiR-186 was documented as a tumor suppressor miRNA in the majority of studies, while conflicting reports verified miR-186 as an oncomir. The contradictory role in cancers may impede the application of miR-186, as well as other dual-functional miRNAs, as a diagnostic and therapeutic target. This review emphasizes the alterations and functions of miR-186 in cancers and discusses the mechanisms behind the contradictory findings. Among these, target abundance and dose-dependent effects of miR-186 are highlighted. The paper aims to review the challenges involved in developing diagnostic and therapeutic strategies for cancer treatment based on dual-functional miRNAs.
References
miR-186 downregulates protein phosphatase PPM1B in bladder cancer and mediates G1-S phase transition
CircRNA circPDSS1 promotes the gastric cancer progression by sponging miR-186-5p and modulating NEK2
Lycorine inhibited the cell growth of non-small cell lung cancer by modulating the miR-186/CDK1 axis
Related Concepts
Related Feeds
Apoptosis
Apoptosis is a specific process that leads to programmed cell death through the activation of an evolutionary conserved intracellular pathway leading to pathognomic cellular changes distinct from cellular necrosis
Apoptosis in Cancer
Apoptosis is an important mechanism in cancer. By evading apoptosis, tumors can continue to grow without regulation and metastasize systemically. Many therapies are evaluating the use of pro-apoptotic activation to eliminate cancer growth. Here is the latest research on apoptosis in cancer.