The effect of temperature and humidity on the stability of SARS-CoV-2 and other enveloped viruses

BioRxiv : the Preprint Server for Biology
Dylan H. MorrisJ. O. Lloyd-Smith

Abstract

Since emerging in late 2019, SARS-CoV-2 has caused a global pandemic, and it may become an endemic human pathogen. Understanding the impact of environmental conditions on SARS-CoV-2 viability and its transmission potential is crucial to anticipating epidemic dynamics and designing mitigation strategies. Ambient temperature and humidity are known to have strong effects on the environmental stability of viruses, but there is little data for SARS-CoV-2, and a general quantitative understanding of how temperature and humidity affect virus stability has remained elusive. Here, we characterise the stability of SARS-CoV-2 on an inert surface at a variety of temperature and humidity conditions, and introduce a mechanistic model that enables accurate prediction of virus stability in unobserved conditions. We find that SARS-CoV-2 survives better at low temperatures and extreme relative humidities; median estimated virus half-life was more than 24 hours at 10 {degrees}C and 40 % RH, but less than an hour and a half at 27 {degrees}C and 65 % RH. Our results highlight scenarios of particular transmission risk, and provide a mechanistic explanation for observed superspreading events in cool indoor environments such as food processing plants....Continue Reading

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.