The emerging role of miRNA-132/212 cluster in neurologic and cardiovascular diseases: Neuroprotective role in cells with prolonged longevity.

Mechanisms of Ageing and Development
Rachid El FatimyLuc Rochette

Abstract

miRNA-132/212 are small regulators of gene expression with a function that fulfills a vital function in diverse biological processes including neuroprotection of cells with prolonged longevity in neurons and the cardiovascular system. In neurons, miRNA-132 appears to be essential for controlling differentiation, development, and neural functioning. Indeed, it also universally promotes axon evolution, nervous migration, plasticity as well, it is suggested to be neuroprotective against neurodegenerative diseases. Moreover, miRNA-132/212 disorder leads to neural developmental perturbation, and the development of degenerative disorders covering Alzheimer's, Parkinson's, and epilepsy's along with psychiatric perturbations including schizophrenia. Furthermore, the cellular mechanisms of the miRNA-132/212 have additionally been explored in cardiovascular diseases models. Also, the miRNA-132/212 family modulates cardiac hypertrophy and autophagy in cardiomyocytes. The protective and effective clinical promise of miRNA-132/212 in these systems is discussed in this review. To sum up, the current progress in innovative miRNA-based therapies for human pathologies seems of extreme concern and reveals promising novel therapeutic strategies.

References


❮ Previous
Next ❯

Related Concepts

Related Feeds

Parkinson's Disease & Autophagy (MDS)

Autophagy leads to degradation of damaged proteins and organelles by the lysosome. Impaired autophagy has been implicated in several diseases. Here is the role of autophagy in Parkinson’s disease.

Autophagy & Model Organisms

Autophagy is a cellular process that allows degradation by the lysosome of cytoplasmic components such as proteins or organelles. Here is the latest research on autophagy & model organisms

Cardiovascular Homeostasis

Cardiovascular regulation and homeostasis is important in maintaining health and dysfunction may lead to cardiovascular diseases. Nitric oxide and vascular endothelium are one of many molecules involved in the homeostatic mechanism. Here is the latest research on cardiovascular homeostasis.

Parkinson's Disease & Autophagy

Autophagy leads to degradation of damaged proteins and organelles by the lysosome. Impaired autophagy has been implicated in several diseases. Here is the role of autophagy in Parkinson’s disease.

Autophagy & Disease

Autophagy is an important cellular process for normal physiology and both elevated and decreased levels of autophagy are associated with disease. Here is the latest research.

Cell Migration

Cell migration is involved in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. Here is the latest research.