The flagellar motor of Vibrio alginolyticus undergoes major structural remodeling during rotational switching

BioRxiv : the Preprint Server for Biology
Jun LiuM. Homma


The bacterial flagellar motor is an intricate nanomachine that switches rotational directions between counterclockwise (CCW) and clockwise (CW) to direct the migration of the cell. The cytoplasmic ring (C-ring) of the motor, which is composed of FliG, FliM, and FliN, is essential for controlling the rotational sense of the flagellum. However, the mechanism underlying rotational switching remains elusive. Here, we deployed cryo-electron tomography to visualize the C-ring in two rotational biased mutants (CCW-biased fliG-G214S and CW-locked fliG-G215A) in Vibrio alginolyticus. Sub-tomogram averaging was utilized to resolve two distinct conformations of the C-ring. Comparison of the C-ring structures in two rotational senses provide direct evidence that the C-ring undergoes major structural remodeling during rotational switch. Specifically, FliG conformational changes elicit a large rearrangement of the C-ring that coincides with rotational switching, whereas FliM and FliN form a spiral-shaped base, likely stabilizing the C-ring during the conformational remodeling.

Related Concepts

Metabolic Process, Cellular
Ribosomal Proteins
Transcription, Genetic
Ascomycota (fungus)
Gene Transfer, Horizontal
Metabolic Pathway

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.