May 23, 2020

The function of KptA/Tpt1 gene - a minor review

Functional Plant Biology : FPB
Shiquan YangBo Zhou

Abstract

Rapid response of uni- and multicellular organisms to environmental changes and their own growth is achieved through a series of molecular mechanisms, often involving modification of macromolecules, including nucleic acids, proteins and lipids. The ADP-ribosylation process has ability to modify these different macromolecules in cells, and is closely related to the biological processes, such as DNA replication, transcription, signal transduction, cell division, stress, microbial aging and pathogenesis. In addition, tRNA plays an essential role in the regulation of gene expression, as effector molecules, no-load tRNA affects the overall gene expression level of cells under some nutritional stress. KptA/Tpt1 is an essential phosphotransferase in the process of pre-tRNA splicing, releasing mature tRNA and participating in ADP-ribose. The objective of this review is concluding the gene structure, the evolution history and the function of KptA/Tpt1 from prokaryote to eukaryote organisms. At the same time, the results of promoter elements analysis were also shown in the present study. Moreover, the problems in the function of KptA/Tpt1 that have not been clarified at the present time are summarised, and some suggestions to solve those...Continue Reading

  • References98
  • Citations
  • References98
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Gene Expression
Stress
Cell Division
KptA protein, E coli
Aging
Phosphotransferases
Analysis
Nucleic Acids
Transfer RNA
Adenosine Diphosphate Ribose

Related Feeds

Cell Aging

This feed focuses on cellular aging with emphasis on the mitochondria, autophagy, and metabolic processes associated with aging and longevity. Here is the latest research on cell aging.

Cell Aging (Keystone)

This feed focuses on cellular aging with emphasis on the mitochondria, autophagy, and metabolic processes associated with aging and longevity. Here is the latest research on cell aging.