DOI: 10.1101/505255Dec 22, 2018Paper

The FXR2P low complexity domain drives assembly of multiple fibril types with differing ribosome association in neurons

BioRxiv : the Preprint Server for Biology
Emily E StackpoleJustin R Fallon


RNA binding proteins (RBPs) typically function in higher order assemblages to regulate RNA localization and translation. The Fragile X homolog FXR2P is an RBP essential for formation of Fragile X granules, which associate with axonal mRNA and ribosomes in the intact brain. Here we performed an unbiased EGFP insertional mutagenesis screen to probe for FXR2P domains important for assembly into higher order structural states in neurons. Fifteen of the 18 unique in-frame FXR2PEGFP fusions tested formed cytosolic granules. However, EGFP insertion within a 23 amino acid region of the low complexity (LC) domain induced formation of distinct FXR2PEGFP fibrils (A and B) that were found in isolation or assembled into highly ordered bundles. Type A and B complexes exhibited different developmental timelines, ultrastructure and ribosome association with ribosomes absent from bundled Type B fibrils. The formation of both fibril types was dependent on an intact RNA binding domain. We conclude that formation of these higher order FXR2P assemblages with alternative structural and compositional states in neurons requires collaboration between the LC and RNA binding domains.

Related Concepts

RNA, Messenger
Mutagenesis, Insertional
RNA-Binding Proteins
Fusion protein

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.