Nov 5, 2018

The GTPase Nog1 couples polypeptide exit tunnel quality control with ribosomal stalk assembly

BioRxiv : the Preprint Server for Biology
Purnima NerurkarVikram Panse


Eukaryotic ribosome precursors acquire translation competence in the cytoplasm through stepwise release of bound assembly factors, and proofreading of their functional centers. In case of the large subunit precursor (pre-60S), these essential steps include eviction of placeholders Arx1 and Mrt4 that prevent premature loading of the protein-folding machinery at the polypeptide exit tunnel (PET), and the ribosomal stalk, respectively. Here, we reveal that sequential ATPase and GTPase activities license release factors Rei1 and Yvh1 recruitment to the pre-60S in order to trigger Arx1 and Mrt4 removal. Drg1-ATPase activity extracts the C-terminal tail of Nog1 from the PET, enabling Rei1 to probe PET integrity, and then catalyze Arx1 release. Subsequently, GTPase hydrolysis stimulates Nog1 removal from the pre-60S, permitting Yvh1 to mediate Mrt4 release, and initiate ribosomal stalk assembly. Thus, Nog1 couples quality control and assembly of spatially distant functional centers during ribosome formation.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Health Center
VTA1 gene
Re1-Ybr267w protein, S cerevisiae
Carboxy-Terminal Amino Acid
Positron-Emission Tomography
Adenosine Triphosphatases
G-Protein-Coupled Receptors
Nog1 protein, mouse
DUSP1 protein, human
Ribosome Subunits, Small, Eukaryotic

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.