The haemodynamic effects of metabolic acidosis in the rat

Clinical Science and Molecular Medicine
J YudkinB Slack


1. The effect of metabolic acidosis of 4-6 h duration on cardiac output, blood pressure, heart rate, and hepatic and renal blood flow has been studied in the rat. 2. In anaesthetized rats, blood pressure and heart rate fell linearly with blood pH in both sham-operated and nephrectomized rats. There was no significant difference between the two groups in the effect of acidosis on either variable. 3. Cardiac output showed a significant fall with increasing acidosis in the conscious rat. 4. Estimated hepatic blood flow in conscious rats showed a significant positive correlation with blood pH in both sham-operated and nephrectomized animals. There was no significant difference in estimated hepatic blood flow between the two groups of animals at any blood pH. 5. In conscious rats, increasing acidosis caused a progressive decrease in estimated renal blood flow. 6. It is concluded that the increase in the previously described apparent renal contribution to lactate removal in the acidotic rat cannot be explained by any circulatory effect mediated by the kidney. The possible relevance of the findings to lactate homeostasis is discussed.


Nov 1, 1976·Clinics in Endocrinology and Metabolism·D G Johnston, K G Alberti
Jan 1, 1985·Annales Françaises D'anesthèsie Et De Rèanimation·S PoliC Perret
Jan 1, 1989·Research in Experimental Medicine. Zeitschrift Für Die Gesamte Experimentelle Medizin Einschliesslich Experimenteller Chirurgie·H J MäkisaloK A Höckerstedt
Mar 1, 1987·Hepatology : Official Journal of the American Association for the Study of Liver Diseases·F DesmoulinP J Cozzone
Sep 1, 1987·The American Journal of Physiology·A I Arieff, H Graf

Related Concepts

Metabolic Acidosis
Ascending Aorta Structure
Diastolic Blood Pressure
Cardiac Output
Pulse Rate
Hydrogen-Ion Concentration
Regional Blood Flow

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

The Tendon Seed Network

Tendons are rich in the extracellular matrix and are abundant throughout the body providing essential roles including structure and mobility. The transcriptome of tendons is being compiled to understand the micro-anatomical functioning of tendons. Discover the latest research pertaining to the Tendon Seed Network here.

Myocardial Stunning

Myocardial stunning is a mechanical dysfunction that persists after reperfusion of previously ischemic tissue in the absence of irreversible damage including myocardial necrosis. Here is the latest research.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.


Incretins are metabolic hormones that stimulate a decrease in glucose levels in the blood and they have been implicated in glycemic regulation in the remission phase of type 1 diabetes. Here is the latest research.

Chromatin Regulation and Circadian Clocks

The circadian clock plays an important role in regulating transcriptional dynamics through changes in chromatin folding and remodelling. Discover the latest research on Chromatin Regulation and Circadian Clocks here.

Long COVID-19

“Long Covid-19” describes illness in patients who are reporting long-lasting effects of the SARS-CoV-19 infection, often long after they have recovered from acute Covid-19. Ongoing health issues often reported include low exercise tolerance and breathing difficulties, chronic tiredness, and mental health problems such as post-traumatic stress disorder and depression. This feed follows the latest research into Long Covid.

Spatio-Temporal Regulation of DNA Repair

DNA repair is a complex process regulated by several different classes of enzymes, including ligases, endonucleases, and polymerases. This feed focuses on the spatial and temporal regulation that accompanies DNA damage signaling and repair enzymes and processes.