The immune vulnerability landscape of the 2019 Novel Coronavirus, SARS-CoV-2

BioRxiv : the Preprint Server for Biology
James ZhuYang Xie


The outbreak of the 2019 Novel Coronavirus (SARS-CoV-2) rapidly spread from Wuhan, China to more than 150 countries, areas, or territories, causing staggering numbers of infections and deaths. In this study, bioinformatics analyses were performed on 5,568 complete genomes of SARS-CoV-2 virus to predict the T cell and B cell immunogenic epitopes of all viral proteins, which formed a systematic immune vulnerability landscape of SARS-CoV-2. The immune vulnerability and genetic variation profiles of SARS-CoV were compared with those of SARS-CoV and MERS-CoV. In addition, a web portal was developed to broadly share the data and results as a resource for the research community. Using this resource, we showed that genetic variations in SARS-CoV-2 are associated with loss of B cell immunogenicity, an increase in CD4 + T cell immunogenicity, and a minimum loss in CD8 + T cell immunogenicity, indicating the existence of a curious correlation between SARS-CoV-2 genetic evolutions and the immunity pressure from the host. Overall, we present an immunological resource for SARS-CoV-2 that could promote both therapeutic/vaccine development and mechanistic research.


Apr 19, 2020·Journal of Virology·Austin NguyenReid F Thompson

Related Concepts

Related Feeds

Bioinformatics in Biomedicine (Preprints)

Bioinformatics in biomedicine incorporates computer science, biology, chemistry, medicine, mathematics and statistics. Discover the latest preprints on bioinformatics in biomedicine here.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

B cell Activation

B cell activation is initiated by the ligation of the B cell receptor with antigen and ultimately results in the production of protective antibodies against potentially pathogenic invaders. Here is the latest research.