Apr 2, 2020

Functional diversification of Ser-Arg rich protein kinases to control ubiquitin-dependent neurodevelopmental signalling

BioRxiv : the Preprint Server for Biology
Bargavi ThyagarajanGreg Michael Findlay


Conserved protein kinases with core cellular functions have been frequently redeployed during metazoan evolution to regulate specialized developmental processes. Ser-Arg Repeat Protein Kinase (SRPK) is one such conserved eukaryotic kinase, which controls mRNA splicing. Surprisingly, we show that SRPK has acquired a novel function in regulating a neurodevelopmental ubiquitin signalling pathway. In mammalian embryonic stem cells, SRPK phosphorylates Ser-Arg motifs in RNF12/RLIM, a key developmental E3 ubiquitin ligase that is mutated in an intellectual disability syndrome. Processive phosphorylation by SRPK stimulates RNF12-dependent ubiquitylation of transcription factor substrates, thereby acting to restrain a neural gene expression programme that is aberrantly expressed in intellectual disability. SRPK family genes are also mutated in intellectual disability disorders, and patient-derived SRPK point mutations impair RNF12 phosphorylation. Our data reveal unappreciated functional diversification of SRPK to regulate ubiquitin signalling that ensures correct regulation of neurodevelopmental gene expression.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Hemagglutinins, Viral
Influenza virus vaccine
Passage Tissue Culture Technique
Influenza A virus
Deep Sequencing

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.