Oct 28, 2018

The multi PAM2 protein Upa2 functions as novel core component of endosomal mRNA transport

BioRxiv : the Preprint Server for Biology
Silke JankowskiMichael Feldbruegge


mRNA transport determines spatiotemporal protein expression. Transport units are higher-order ribonucleoprotein complexes containing cargo mRNAs, RNA-binding proteins and accessory proteins. Endosomal mRNA transport in fungal hyphae belongs to the best-studied translocation mechanisms. Although several factors are known, additional core components are missing. Here, we describe the 232 kDa protein Upa2 containing multiple PAM2 motifs (poly[A]-binding protein [Pab1] associated motif 2) as a novel core component. Loss of Upa2 disturbs transport of cargo mRNAs and associated Pab1. Upa2 is present on almost all transport endosomes in an mRNA dependent-manner. Surprisingly, all four PAM2 motifs are dispensable for function during unipolar hyphal growth. Instead, Upa2 harbours a novel N-terminal effector domain as important functional determinant as well as a C-terminal GWW motif for specific endosomal localisation. In essence, Upa2 meets all the criteria of a novel core component of endosomal mRNA transport and appears to carry out crucial scaffolding functions.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Establishment and Maintenance of Localization
Carboxy-Terminal Amino Acid
Ribonucleoprotein Activity
Biochemical Mechanism
Death Effector Domain
Complex (molecular entity)
PABPC1 gene
MRNA Transport
Hyphal Growth

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.