PMID: 2642Jan 1, 1975

The myofilament lattice: studies on isolated fibers. IV. Lattice equilibria in striated muscle

Journal of Mechanochemistry & Cell Motility
E W April


Accounts of similarities between the thick filament lattice of striated muscle and smectic liquid-crystalline structures have focused upon an equilibrium between electrostatic (repulsive) and van der Waal's (attractive) forces. In living, intact muscle the fiber volume constitutes an additional important parameter which influences the amount of interaxial separation between the filaments. This is demonstrable by comparison of the lattice behavior of living fibers with that of fibers from which the sarcolemma has either been removed or made leaky by glycerination. These comparisons were made mainly by low-angle X-ray diffraction under conditions of changes in sarcomere length, ionic strength or osmolarity, and pH. Single fibers with the sarcolemma removed and glycerinated muscle have lattices which behave in accord with equilibrium liquid-crystalline systems in which the thick filament spacing is determined by the balance between electrostatic and van der Waal's forces. Conversely, osmotic and shortening studies demonstrate that the living, intact muscle has a lattice which behaves in accord with the so-called non-equilibrium (volume-constrained) liquid-crystalline condition in which the interaxial separation between the thick f...Continue Reading

Related Concepts

Hydrogen-Ion Concentration
Actomyosin Adenosinetriphosphatase
Osmotic Stress
Plasma Protein Binding Capacity
Protein Conformation

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Systemic Juvenile Idiopathic Arthritis

Systemic juvenile idiopathic arthritis is a rare rheumatic disease that affects children. Symptoms include joint pain, but also fevers and skin rashes. Here is the latest on this disease.

Chromatin Regulation and Circadian Clocks

The circadian clock plays an important role in regulating transcriptional dynamics through changes in chromatin folding and remodelling. Discover the latest research on Chromatin Regulation and Circadian Clocks here.

Central Pontine Myelinolysis

Central Pontine Myelinolysis is a neurologic disorder caused most frequently by rapid correction of hyponatremia and is characterized by demyelination that affects the central portion of the base of the pons. Here is the latest research on this disease.

Myocardial Stunning

Myocardial stunning is a mechanical dysfunction that persists after reperfusion of previously ischemic tissue in the absence of irreversible damage including myocardial necrosis. Here is the latest research.

Pontocerebellar Hypoplasia

Pontocerebellar hypoplasias are a group of neurodegenerative autosomal recessive disorders with prenatal onset, atrophy or hypoplasia of the cerebellum, hypoplasia of the ventral pons, microcephaly, variable neocortical atrophy and severe mental and motor impairments. Here is the latest research on pontocerebellar hypoplasia.

Cell Atlas Along the Gut-Brain Axis

Profiling cells along the gut-brain axis at the single cell level will provide unique information for each cell type, a three-dimensional map of how cell types work together to form tissues, and insights into how changes in the map underlie health and disease of the GI system and its crosstalk with the brain. Disocver the latest research on single cell analysis of the gut-brain axis here.

Chronic Traumatic Encephalopathy

Chronic Traumatic Encephalopathy (CTE) is a progressive degenerative disease that occurs in individuals that suffer repetitive brain trauma. Discover the latest research on traumatic encephalopathy here.