Apr 2, 2020

Membrane tension can enhance adaptation to maintain polarity of migrating cells

BioRxiv : the Preprint Server for Biology
C. ZmurchokWilliam R. Holmes

Abstract

Migratory cells are known to adapt to environments that contain wide-ranging levels of chemoattractant. While biochemical models of adaptation have been previously proposed, here we discuss a different mechanism based on mechanosensing, where the interaction between biochemical signaling and cell tension facilitates adaptation. We describe and analyze a model of mechanochemical-based adaptation coupling a mechanics-based physical model of cell tension coupled with the wave-pinning reaction-diffusion model for Rac activity. Mathematical analysis of this model, simulations of a simplified 1D cell geometry, and 2D finite element simulations of deforming cells reveal that as a cell protrudes under the influence of high stimulation levels, tension mediated inhibition of GTPase signaling causes the cell to polarize even when initially over-stimulated. Specifically, tension mediated inhibition of GTPase activation, which has been experimentally observed in recent years, facilitates this adaptation by countering the high levels of environmental stimulation. These results demonstrate how tension related mechanosensing may provide an alternative (and potentially complementary) mechanism for cell adaptation.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Research
Genome
Regulation of Biological Process
Human Genetics
Nucleic Acid Sequencing
Sequencing
Pharmaceutical Preparations
Biotechnology
Species
Genome, Human

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Bioinformatics in Biomedicine (Preprints)

Bioinformatics in biomedicine incorporates computer science, biology, chemistry, medicine, mathematics and statistics. Discover the latest preprints on bioinformatics in biomedicine here.

Bioinformatics in Biomedicine

Bioinformatics in biomedicine incorporates computer science, biology, chemistry, medicine, mathematics and statistics. Discover the latest research on bioinformatics in biomedicine here.