Aug 1, 1975

The oxygen transport system of red blood cells during diabetic ketoacidosis and recovery

Jørn Ditzel, E Standl


Daily evaluations of 8 newly detected ketoacidotic diabetics showed the Bohr-effect of haemoglobin to be decreased by 50% while erythrocyte 2,3-DPG was decreased below 10 mumoles/g Hb. 2,3-DPG correlated strongly with pH during acidosis and with plasma inorganic phosphate (Pi) subsequently to the first insulin administration. Oxygen affinity of haemoglobin, measured as P50 act pH, was unchanged in ketoacidosis compared to the time, however, P50 act pH fell striking (p less than 0.001) and remained decreased up to 7 days depending upon the resynthesis of 2,3-DPG in relation to Pi. The Hill-coefeficient in reflecting the slope of the oxygen dissociation curve was diminished in ketoacidosis (p less than 0.005), and decreased further after pH-normalization (p less than 0.005). There was a close association of n with 2,3-DPG (p less than 0.001) and additionally with Pi at 2,3-DPG-levels below 10 mumoles/g Hb. Based on these findings a decreased erythrocyte oxygen release of one fifth during acidosis and more than one third after pH-correction can be hypothesised. In view of the intimate relation of Pi to the oxygen transport system it is suggesed that treatment of ketoacidosis should include Pi-sugstitution.

  • References17
  • Citations37


  • References17
  • Citations37


Mentioned in this Paper

Diphosphoglyceric Acids
Diabetic Ketoacidosis
Hydrogen-Ion Concentration

About this Paper

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Autism: Motor Learning

A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, consistent with perturbation in cerebellar function. Find the latest research on ASD and motor learning here.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Sexual Dimorphism in Neurodegeneration

There exist sex differences in neurodevelopmental and neurodegenerative disorders. For instance, multiple sclerosis is more common in women, whereas Parkinson’s disease is more common in men. Here is the latest research on sexual dimorphism in neurodegeneration

Protein Localization in Disease & Therapy

Localization of proteins is critical for ensuring the correct location for physiological functioning. If an error occurs, diseases such as cardiovascular, neurodegenerative disorders and cancers can present. Therapies are being explored to target this mislocalization. Here is the latest research on protein localization in disease and therapy.

Genetic Screens in Bacteria

Genetic screens can provide important information on gene function as well as the molecular events that underlie a biological process or pathway. Here is the latest research on genetic screens in bacteria.

Head And Neck Squamous Cell Carcinoma

Squamous cell carcinomas account for >90% of all tumors in the head and neck region. Head and neck squamous cell carcinoma incidence has increased dramatically recently with little improvement in patient outcomes. Here is the latest research on this aggressive malignancy.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.