Jan 1, 1976

The pH dependence of binding of alpha,alpha'-dibromo-p-xylenesulfonic acid to lysozyme

International Journal of Peptide and Protein Research
A C Chung, R A Day

Abstract

The chemical modification of lysozyme (I) has been accomplished with alpha, alpha'-dibromo-p-xylenesulfonic acid (DBX) at five different pH values. I was alkylated by DBX at room temperature (28 degrees C) with decrease in enzyme activity. The rate of inactivation depended upon the pH at which alkylation was carried out. The highest rate was seen at alkaline pH values; the lowest at more acidic pH values. Amino acid analyses showed that-two lysines and two tryptophan residues had been modified at pH 9; two lysines, one tryptophan and one methionine had reacted at pH 8. A histidine residue was bound at pH 6.5 together with a tryptophan residue. At the lower pH values (2.7, 4.5, 6.5), alkylation occurred with a single tryptophan residue each. Fluorescence and CD data both ruled out the participation of tryptophans 62 or 108. Labeling experiments showed that two residues of DBX-35S were bound per molecule of I at both pH9 and pH8; one residue of DBX was bound per molecule of I at the other pH values. Sedimentation coefficients were characteristic of native lysozyme. The stoichiometry of binding and residue modification indicated that intra-molecular cross links were established. The pH dependence of the cross-linking provides mean...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Benzenesulfonates
Xylene
Plasma Protein Binding Capacity
Spectrophotometry, Ultraviolet
Circular Dichroism, Vibrational
Leftose
Hydrogen-Ion Concentration

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.