DOI: 10.1101/516021Jan 9, 2019Paper

The population dynamics of a canonical cognitive circuit

BioRxiv : the Preprint Server for Biology
Rishidev ChaudhuriIla R Fiete


The brain constructs distributed representations of key low-dimensional variables. These variables may be external stimuli or internal constructs of quantities relevant for survival, such as a sense of one's location in the world. We consider that the high-dimensional population-level activity vectors are the fundamental representational currency of a neural circuit, and these vectors trace out a low-dimensional manifold whose dimension and topology matches those of the represented variable. This manifold perspective -- applied to the mammalian head direction circuit across rich waking behaviors and sleep -- enables powerful inferences about circuit representation and mechanism, including: Direct visualization and blind discovery that the network represents a one-dimensional circular variable across waking and REM sleep; fully unsupervised decoding of the coded variable; stability and attractor dynamics in the representation; the discovery of new dynamical trajectories during sleep; the limiting role of external rather than internal noise in the fidelity of memory states; and the conclusion that the circuit is set up to integrate velocity inputs according to classical continuous attractor models.

Related Concepts

Genetic Vectors
Sleep, REM

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.