DOI: 10.1101/481598Nov 29, 2018Paper

The repressive genome compartment is established early in the cell cycle before forming the lamina associated domains

BioRxiv : the Preprint Server for Biology
Teresa R LuperchioKaren L Reddy


Three-dimensional (3D) genome organization is thought to be important for regulation of gene expression. Chromosome conformation capture-based studies have uncovered ensemble organizational principles such as active (A) and inactive (B) compartmentalization. In addition, large inactive regions of the genome associate with the nuclear lamina, the Lamina Associated Domains (LADs). Here we investigate the dynamic relationship between A/B-compartment organization and the 3D organization of LADs. Using refined algorithms to identify active (A) and inactive (B) compartments from Hi-C data and to define LADs from DamID, we confirm that the LADs correspond to the B-compartment. Using specialized chromosome conformation paints, we show that LAD and A/B-compartment organization are dependent upon chromatin state and A-type lamins. By integrating single-cell Hi-C data with live cell imaging and chromosome conformation paints, we demonstrate that self-organization of the B-compartment within a chromosome is an early event post-mitosis and occurs prior to organization of these domains to the nuclear lamina.

Related Concepts

Body Fluid Compartments
Cell Cycle
Gene Expression
Plasma Cells
Lamin Type A
Anterior Descending Branch of Left Coronary Artery

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.