Jun 3, 2009

The role of biomacromolecular crowding, ionic strength, and physicochemical gradients in the complexities of life's emergence

Microbiology and Molecular Biology Reviews : MMBR
Jan Spitzer, Bert Poolman

Abstract

We have developed a general scenario of prebiotic physicochemical evolution during the Earth's Hadean eon and reviewed the relevant literature. We suggest that prebiotic chemical evolution started in microspaces with membranous walls, where external temperature and osmotic gradients were coupled to free-energy gradients of potential chemical reactions. The key feature of this scenario is the onset of an emergent evolutionary transition within the microspaces that is described by the model of complex vectorial chemistry. This transition occurs at average macromolecular crowding of 20 to 30% of the cell volume, when the ranges of action of stabilizing colloidal forces (screened electrostatic forces, hydration, and excluded volume forces) become commensurate. Under these conditions, the macromolecules divide the interior of microspaces into dynamically crowded macromolecular regions and topologically complementary electrolyte pools. Small ions and ionic metabolites are transported vectorially between the electrolyte pools and through the (semiconducting) electrolyte pathways of the crowded macromolecular regions from their high electrochemical potential (where they are biochemically produced) to their lower electrochemical potenti...Continue Reading

Mentioned in this Paper

Biochemical Pathway
Tissue Membrane
Electrolytes
Protoplasm
Prebiotics
Tooth Crowding
Evolution, Chemical
Macromolecule
Electrolyte [EPC]
Metabolite

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.