Feb 3, 2006

The role of folate receptor alpha in cancer development, progression and treatment: cause, consequence or innocent bystander?

International Journal of Cancer. Journal International Du Cancer
Linda E Kelemen

Abstract

Folate receptor alpha (FRalpha) is a membrane-bound protein with high affinity for binding and transporting physiologic levels of folate into cells. Folate is a basic component of cell metabolism and DNA synthesis and repair, and rapidly dividing cancer cells have an increased requirement for folate to maintain DNA synthesis, an observation supported by the widespread use of antifolates in cancer chemotherapy. FRalpha levels are high in specific malignant tumors of epithelial origin compared to normal cells, and are positively associated with tumor stage and grade, raising questions of its role in tumor etiology and progression. It has been suggested that FRalpha might confer a growth advantage to the tumor by modulating folate uptake from serum or by generating regulatory signals. Indeed, cell culture studies show that expression of the FRalpha gene, FOLR1, is regulated by extracellular folate depletion, increased homocysteine accumulation, steroid hormone concentrations, interaction with specific transcription factors and cytosolic proteins, and possibly genetic mutations. Whether FRalpha in tumors decreases in vivo among individuals who are folate sufficient, or whether the tumor's machinery sustains FRalpha levels to meet t...Continue Reading

  • References72
  • Citations140

Citations

Mentioned in this Paper

Metabolic Process, Cellular
Gene Expression Regulation, Neoplastic
Extracellular
Hormone Receptors, Cell Surface
Uptake
Cell Culture Techniques
Neoplasms
Folate Receptor 1
DNA, Neoplasm
Etiology

Related Feeds

Cancer Metabolism

In order for cancer cells to maintain rapid, uncontrolled cell proliferation, they must acquire a source of energy. Cancer cells acquire metabolic energy from their surrounding environment and utilize the host cell nutrients to do so. Here is the latest research on cancer metabolism.