The role of poly(ADP-ribosyl)ation in DNA damage response and cancer chemotherapy

Oncogene
M Li, Xiaochun Yu

Abstract

DNA damage is a deleterious threat, but occurs daily in all types of cells. In response to DNA damage, poly(ADP-ribosyl)ation, a unique post-translational modification, is immediately catalyzed by poly(ADP-ribose) polymerases (PARPs) at DNA lesions, which facilitates DNA damage repair. Recent studies suggest that poly(ADP-ribosyl)ation is one of the first steps of cellular DNA damage response and governs early DNA damage response pathways. Suppression of DNA damage-induced poly(ADP-ribosyl)ation by PARP inhibitors impairs early DNA damage response events. Moreover, PARP inhibitors are emerging as anti-cancer drugs in phase III clinical trials for BRCA-deficient tumors. In this review, we discuss recent findings on poly(ADP-ribosyl)ation in DNA damage response as well as the molecular mechanism by which PARP inhibitors selectively kill tumor cells with BRCA mutations.

References

Jun 17, 2016·Molecular & Cellular Oncology·Anne Roulston, Gordon C Shore
Mar 5, 2016·Oncoimmunology·José YélamosJavier Oliver
Nov 25, 2015·Advanced Drug Delivery Reviews·Daniel R Wahl, Theodore S Lawrence
Sep 20, 2015·Bulletin du cancer·Valérie SchreiberFrançoise Dantzer
Jun 17, 2016·Molecular & Cellular Oncology·Antonella SistiguIlio Vitale
May 24, 2016·Journal of Hepatology·Gianluigi GiannelliWolfgang Mikulits
Aug 16, 2016·SpringerPlus·Gonzalo H Giornelli
Oct 7, 2016·Scientific Reports·Ezeogo ObajiLari Lehtiö
Apr 30, 2016·Journal of Bone and Mineral Research : the Official Journal of the American Society for Bone and Mineral Research·Fangfang ZhouLong Zhang
Apr 19, 2016·The FEBS Journal·Florian J Bock, Paul Chang
Nov 25, 2017·Cellular and Molecular Life Sciences : CMLS·Ilaria DuttoEnnio Prosperi
Dec 30, 2017·Antioxidants & Redox Signaling·Ilmo E Hassinen
Dec 1, 2017·Nucleic Acids Research·Xiang GuoJiadong Wang
Nov 29, 2017·Nature Communications·Jose Mario Gonzalez-MeljemJuan Pedro Martinez-Barbera
Aug 11, 2017·ELife·Giuliana Katharina Moeller, Gyula Timinszky
Nov 30, 2018·International Journal of Molecular Sciences·Mathieu CésaireFrançois Chevalier
Apr 2, 2019·Current Topics in Medicinal Chemistry·Wenjie Wang, Yuk-Ching Tse-Dinh
Feb 28, 2016·Oncotarget·Sandra TepperBerit Jungnickel
Oct 16, 2016·Oncotarget·Olga Villamar CruzLuis E Arias-Romero
Apr 5, 2020·Cancers·Juan Manuel MartíFrancisco Javier Oliver
Aug 15, 2018·Nature Communications·Qian ChenXiaochun Yu
Sep 5, 2020·Nature Reviews. Drug Discovery·Nicola J Curtin, Csaba Szabo
Sep 13, 2017·Breast Cancer Research : BCR·Imke H BartelinkLaura van 't Veer
Nov 14, 2018·Biochemical Society Transactions·Luca Palazzo, Ivan Ahel
Oct 20, 2020·Frontiers in Medicine·Xixi SongMeiling Jin

Citations

Aug 1, 1977·Nucleic Acids Research·H SakuraT Sugimura
Apr 1, 1990·Proceedings of the National Academy of Sciences of the United States of America·G GradwohlGilbert de Murcia
Sep 1, 1989·Mutation Research·R Alvarez-Gonzalez, F R Althaus
Feb 7, 1980·Nature·B W DurkaczS Shall
Jun 1, 1982·Proceedings of the National Academy of Sciences of the United States of America·Guy G PoirierP MANDEL
Jul 7, 1995·The Journal of Biological Chemistry·D M WilsonBruce Demple
Sep 1, 1994·Molecular and Cellular Biochemistry·R Alvarez-GonzalezH Mendoza-Alvarez
Apr 10, 1999·Genes & Development·W L de LaatJ H Hoeijmakers
Aug 14, 1999·The Journal of Biological Chemistry·F Karimi-BusheriM Weinfeld
Aug 24, 1999·The Biochemical Journal·D D'AmoursGuy G Poirier
Oct 13, 1999·Molecular Cell·Daniel DurocherS P Jackson
Oct 4, 2000·The Journal of Biological Chemistry·J M PleschkeF R Althaus
Dec 2, 2000·Nature·R Scully, D M Livingston
Dec 2, 2000·Nature·B B Zhou, S J Elledge
Mar 10, 2001·Nature Genetics·K K Khanna, S P Jackson
Mar 21, 2001·Human Molecular Genetics·P L Welcsh, M C King
Apr 26, 2001·Proceedings of the National Academy of Sciences of the United States of America·H RuffnerI M Verma
Jul 12, 2001·Proceedings of the National Academy of Sciences of the United States of America·F XiaSimon N Powell
Jul 20, 2001·Experimental Cell Research·L DavidovicGuy G Poirier
Sep 27, 2001·Nature Structural Biology·P S BrzovicR E Klevit
Mar 20, 2002·Nature Reviews. Cancer·E C Friedberg
May 23, 2002·Carcinogenesis·Stephen P Jackson
Dec 17, 2002·Oncogene·Bruce Demple, Michael S DeMott
Jan 28, 2003·Biochemical Society Transactions·Keith W Caldecott
May 16, 2003·Molecular and Cellular Biology·Satoshi OkanoAkira Yasui
Sep 12, 2003·DNA Repair·Keith W Caldecott
Jan 31, 1963·Biochemical and Biophysical Research Communications·J D WEILLP MANDEL
Apr 2, 1963·Biochemical and Biophysical Research Communications·P CHAMBONP MANDEL
Sep 23, 2003·Nucleic Acids Research·Sherif F El-KhamisyKeith W Caldecott
Oct 11, 2003·Cancer Letters·Makoto IshitobiShinzaburo Noguchi
Oct 16, 2003·Molecular and Cellular Biology·Ulrica K WestermarkMary Ellen Moynahan
Oct 25, 2003·Science·Isaac A MankeMichael B Yaffe

Related Concepts

Tumor Cells, Uncertain Whether Benign or Malignant
Biochemical Pathway
Antineoplastic Agents
DNA Repair
Post-Translational Protein Processing
Response to DNA Damage Stimulus
Neoplasms
Visual Suppression
PARP1 wt Allele
Poly(ADP-ribose) Polymerases

Related Feeds

Cancer Epigenetics and Chromatin (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may or may not provide advantages for the cancer cells. This feed focuses on chromatin and its role in cancer epigenetics please follow this feed to learn more.

Cancer Epigenetics Chromatin Complexes (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may or may not provide advantages for the cancer cells. This feed focuses on chromatin complexes and their role in cancer epigenetics.