Jun 28, 2017

The Role of Replication-Associated Repair Factors on R-Loops

Vaibhav BhatiaBelén Gómez-González


The nascent RNA can reinvade the DNA double helix to form a structure termed the R-loop, where a single-stranded DNA (ssDNA) is accompanied by a DNA-RNA hybrid. Unresolved R-loops can impede transcription and replication processes and lead to genomic instability by a mechanism still not fully understood. In this sense, a connection between R-loops and certain chromatin markers has been reported that might play a key role in R-loop homeostasis and genome instability. To counteract the potential harmful effect of R-loops, different conserved messenger ribonucleoprotein (mRNP) biogenesis and nuclear export factors prevent R-loop formation, while ubiquitously-expressed specific ribonucleases and DNA-RNA helicases resolve DNA-RNA hybrids. However, the molecular events associated with R-loop sensing and processing are not yet known. Given that R-loops hinder replication progression, it is plausible that some DNA replication-associated factors contribute to dissolve R-loops or prevent R-loop mediated genome instability. In support of this, R-loops accumulate in cells depleted of the BRCA1, BRCA2 or the Fanconi anemia (FA) DNA repair factors, indicating that they play an active role in R-loop dissolution. In light of these results, we ...Continue Reading

Mentioned in this Paper

BRCA2 Protein
Fanconi Anemia
Biochemical Pathway
BRCA1 protein, human
Molecular Helix
DNA Repair
Transcription, Genetic
Diffusion Magnetic Resonance Imaging
Helix (Snails)
DNA-like RNA

Related Feeds

Breast Cancer: BRCA1 & BRCA2

Mutations involving BRCA1, found on chromosome 17, and BRCA2, found on chromosome 13, increase the risk for specific cancers, such as breast cancer. Discover the last research on breast cancer BRCA1 and BRCA2 here.