Sep 27, 2003

The single tryptophan of the PsbQ protein of photosystem II is at the end of a 4-alpha-helical bundle domain

European Journal of Biochemistry
Mónica BalseraJavier De Las Rivas

Abstract

We examined the microenvironment of the single tryptophan and the tyrosine residues of PsbQ, one of the three main extrinsic proteins of green algal and higher plant photosystem II. On the basis of this information and the previous data on secondary structure [Balsera, M., Arellano, J.B., Gutiérrez, J.R., Heredia, P., Revuelta, J.L. & De Las Rivas, J. (2003) Biochemistry42, 1000-1007], we screened structural models derived by combining various threading approaches. Experimental results showed that the tryptophan residue is partially buried in the core of the protein but still in a polar environment, according to the intrinsic fluorescence emission of PsbQ and the fact that fluorescence quenching by iodide was weaker than that by acrylamide. Furthermore, quenching by cesium suggested that a positively charged barrier shields the tryptophan microenvironment. Comparison of the absorption spectra in native and denaturing conditions indicated that one or two out of six tyrosines of PsbQ are buried in the core of the structure. Using threading methods, a 3D structural model was built for the C-terminal domain of the PsbQ protein family (residues 46-149), while the N-terminal domain is predicted to have a flexible structure. The model...Continue Reading

  • References54
  • Citations5

Citations

Mentioned in this Paper

Tryptophan
Acrylamide
Protein Family
Carboxy-Terminal Amino Acid
Cytochrome b562 Activity
Tertiary Protein Structure
Fluorescence Spectroscopy
Cesium
Tracheobionta
Protein Conformation

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.