Mar 1, 1970

The sodium-alanine interaction in rabbit ileum. Effect of sodium on alanine fluxes

The Journal of General Physiology
J J HajjarP F Curran

Abstract

The model of the interaction between Na and alanine at the mucosal border of rabbit ileum has been tested further by examining the efflux of alanine from the cells toward the mucosal solution. Alanine efflux shows a tendency toward saturation as cellular alanine concentration increases and is influenced by cellular Na concentration. A decrease in cell Na concentration causes an increase in the apparent Michaelis constant with little change in maximal efflux rate. Studies on strips of mucosa treated with ouabain or cyanide showed that the direction of net alanine transfer between the cells and the medium is determined by the direction of the Na concentration difference. The cells extrude alanine against a concentration difference when cell [Na] exceeds medium [Na] and accumulate alanine when cell [Na] is less than medium [Na]. The observations are consistent with the model previously suggested involving a transport site that combines with and translocates both Na and alanine, and with the concept that the Na concentration difference between mucosal solution and cytoplasm provides at least part of the energy for active transport of alanine.

  • References9
  • Citations25

Citations

Mentioned in this Paper

Ileum
Isocyanides
Ouabain
Abufne
Structure of Intestinal Gland
Entire Ileum
Sodium
Extrude
Malignant Neoplasm of Ileum
Choline Hydroxide

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.