PMID: 43144Nov 15, 1979

The stimulus--secretion coupling 4-methyl-2-oxopentanoate-induced insulin release

The Biochemical Journal
J C HuttonW J Malaisse


1. Pancreatic islet insulin secretion and 45Ca uptake showed similar responses to variation in the extracellular concentration of 4-methyl-2-oxopentanoate with a threshold at 4 mM and a maximal response at a 25 mM concentration. 2. Islet respiration, acetoacetate production and rates of substrate utilization, oxidation and amination all changed as a simple hyperbolic function of 4-methyl-2-oxopentanoate concentration and exhibited a maximal response at 25 mM. 3. The responses of ATP content, [ATP]/[ADP] ratio, adenylate energy charge and [NADH]/[NAD+] ratio were also hyperbolic in nature but were maximally elevated at lower concentrations of the secretagogue. The islet [NADPH]/[NADP+] ratio, however, was tightly correlated with parameters of metabolic flux, 45Ca uptake and insulin release. 4. NH4+ and menadione, agents that promote a more oxidized state in islet NADP, did not affect islet ATP content or the rates of [U-14C]4-methyl-2-oxopentanoate oxidation or amination, but markedly inhibited islet 45Ca uptake and insulin release. 5. It is proposed that changes in the redox state of NADP and Ca transport may serve as mediators in the stimulus-secretion coupling mechanism of insulin release induced by 4-methyl-2-oxopentanoate.


Jul 1, 1980·Naunyn-Schmiedeberg's Archives of Pharmacology·S KawazuW J Malaisse
Apr 1, 1993·European Journal of Biochemistry·A C ElliottL Best
Oct 15, 1984·Experientia·W J MalaisseA Sener
Aug 26, 2010·The Journal of Biological Chemistry·Yingsheng ZhouPengxiang She

Related Concepts

Metabolic Process, Cellular
Cell Respiration
Secretory Rate
Process of Secretion

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Synapse Loss as Therapeutic Target in MS

As we age, the number of synapses present in the human brain starts to decline, but in neurodegenerative diseases this occurs at an accelerated rate. In MS, it has been shown that there is a reduction in synaptic density, which presents a potential target for treatment. Here is the latest research on synapse loss as a therapeutic target in MS.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Social Learning

Social learning involves learning new behaviors through observation, imitation and modeling. Follow this feed to stay up to date on the latest research.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Single Cell Chromatin Profiling

Techniques like ATAC-seq and CUT&Tag have the potential to allow single cell profiling of chromatin accessibility, histones, and TFs. This will provide novel insight into cellular heterogeneity and cell states. Discover the latest research on single cell chromatin profiling here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.