May 5, 2015

Theoretical consequences of the Mutagenic Chain Reaction for manipulating natural populations

BioRxiv : the Preprint Server for Biology
Robert UncklessAndrew Clark

Abstract

The use of recombinant genetic technologies for population manipulation has mostly remained an abstract idea due to the lack of a suitable means to drive novel gene constructs to high frequency in populations. Recently Gantz and Bier showed that the use of CRISPR/Cas9 technology could provide an artificial drive mechanism, the so-called Mutagenic Chain Reaction (MCR), which could lead to rapid fixation of even a deleterious introduced allele. We establish the equivalence of this system to models of meiotic drive and review the results of simple models showing that, when there is a fitness cost to the MCR allele, an internal equilibrium exists that is usually unstable. Introductions must be at a frequency above this critical point for the successful invasion of the MCR allele. These modeling results have important implications for application of MCR in natural populations.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Meiotic Cell Cycle
Genes
Sample Fixation
Mutagens
NR3C2 protein, human
Recombinants
Recombinant Proteins
Clustered Regularly Interspaced Short Palindromic Repeats
Alleles
Manipulating Function

About this Paper

Related Feeds

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

CRISPR Ribonucleases Deactivation

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on mechanisms that underlie deactivation of CRISPR ribonucleases. Here is the latest research.

CRISPR Genome Editing & Therapy (Preprints)

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on the application of this system for gene editing and therapy in human diseases.

CRISPR for Genome Editing (Preprints)

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here are the latest preprints on the use of CRISPR-Cas system in gene editing.