Nov 15, 2013

Thiamine deficiency induces massive cell death in the olfactory bulbs of mice

Journal of Neuropathology and Experimental Neurology
Shun HamadaMami Kurumata-Shigeto

Abstract

Thiamine (vitamin B1) deficiency (TD) leads to focal brain necrosis in particular brain regions in humans and in experimental animal models. The precise mechanism of the selective topographic vulnerability triggered by TD still remains unclear. We examined the distribution pattern of cell death in the brains of mice in an experimental model of TD using anti-single-strand DNA immunohistochemistry and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling methods. We found that interneurons in the olfactory bulb were sensitive to TD. The morphologic aspects of cell death in the olfactory bulb resembled those of cell death in thalamic neurons, which have previously been examined in detail. Furthermore, cell death in the olfactory bulb was partly relieved by the administration of an N-methyl-d-aspartate receptor antagonist, as was the case in thalamic lesions by TD. The superficial part of the olfactory granule cell layer seemed to be the most sensitive to TD, suggesting that differences in the afferents between superficial and deep granule cells may influence the sensitivity of these cells to TD. Our results indicate that the olfactory bulb should be considered as one of the vulnerable re...Continue Reading

Mentioned in this Paper

Necrosis
Thiamine Deficiency
Immunohistochemistry
Thiamine Mononitrate
Structure of Olfactory Bulb
Neurons
Brain
Smell Perception
DNA Nucleotidylexotransferase
N-Methylaspartate

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.