Mar 25, 2015

Threshold trait architecture of Hsp90-buffered variation

BioRxiv : the Preprint Server for Biology
Charles C CareySuzannah Rutherford

Abstract

Common genetic variants buffered by Hsp90 are candidates for human diseases of signaling such as cancer. Like cancer, morphological abnormalities buffered by Hsp90 are discrete threshold traits with a continuous underlying basis of liability determining their probability of occurrence. QTL and deletion maps for one of the most frequent Hsp90-dependent abnormalities in Drosophila, deformed eye ( dfe ), were replicated across three genetically related artificial selection lines using strategies dependent on proximity to the dfe threshold and the direction of genetic and environmental effects. Up to 17 dfe loci (QTL) linked by 7 interactions were detected based on the ability of small recombinant regions of an unaffected and completely homozygous control genotype to dominantly suppress or enhance dfe penetrance at its threshold in groups of isogenic recombinant flies, and over 20 deletions increased dfe penetrance from a low expected value in one or more line, identifying a complex network of genes responsible for the dfe phenotype. Replicated comparisons of these whole-genome mapping approaches identified several QTL regions narrowly defined by deletions and 4 candidate genes, with additional uncorrelated QTL and deletions highli...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Buffers
Quantitative Trait Loci
Hsp83
Genes
Candidate Disease Gene
Gene Deletion Abnormality
HSP90AA1 gene
Gene Deletion
Drosophila
Eye Proteins

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.