Jun 1, 1977

Tissue blood flow and distribution of cardiac output in cats: changes caused by intravenous infusions of histamine and histamine receptor agonists

British Journal of Pharmacology
B M Johnston, D A Owen

Abstract

1 The effects of infusions of histamine on blood pressure, cardiac output, heart rate, total peripheral resistance, stroke volume and tissue blood flow have been determined in anaesthetized cats using radio-active microspheres to measure cardiac output and tissue blood flow.2 Histamine caused dose-dependent falls in blood pressure and total peripheral resistance over the dose-range 1 x 10(-8) to 3.3 x 10(-7) mol kg(-1) min(-1). Histamine had no effect on cardiac output, heart rate or stroke volume.3 Histamine caused vasodilatation in the heart and stomach, with increased blood flow through these organs, and in the small and large intestine where blood flow was maintained despite the falls in arterial blood pressure. Blood flow to the brain, kidneys, liver, adrenal glands, skeletal muscle, spleen and skin was reduced when arterial blood pressure fell. Vascular resistance increased in the skin and spleen, presumably due to reflex vasoconstriction when blood pressure fell.4 The selective H(1)-receptor agonist 2-(2-aminoethyl)pyridine lowered blood pressure and decreased total peripheral resistance but did not change cardiac output, heart rate or stroke volume. 2-(2-Aminoethyl)pyridine caused vasodilatation in the heart, small and ...Continue Reading

  • References17
  • Citations19

Citations

Mentioned in this Paper

Histamine Measurement
Pyridines
Large Intestine
Total Peripheral Resistance
Vascular Resistance
Spleen
Pathologic Vasoconstriction
Procedures on Large Intestine
Brain
Entire Large Intestine

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Coronavirus Protein Structures

Deciphering and comparing the proteins of different coronaviruses forms a basis for understanding SARS-CoV-2 evolution and virus-receptor interactions. This feed follows studies analyzing the structures of coronavirus proteins, thereby revealing potential drug target sites.

DDX3X Syndrome

DDX3X syndrome is caused by a spontaneous mutation at conception that primarily affects girls due to its location on the X-chromosome. DDX3X syndrome has been linked to intellectual disabilities, seizures, autism, low muscle tone, brain abnormalities, and slower physical developments. Here is the latest research.

ALS: Stress Granules

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease characterized by cytoplasmic protein aggregates within motor neurons. TDP-43 is an ALS-linked protein that is known to regulate splicing and storage of specific mRNAs into stress granules, which have been implicated in formation of ALS protein aggregates. Here is the latest research.

Fusion Oncoproteins in Childhood Cancers

This feed explores the function of fusion oncoproteins in specific childhood cancers, including those from racial/ethnic minority and underserved groups, and to provide preclinical assessment of potential therapeutics and how fusion oncoproteins influence gene expression to perturb normal cellular programs to block lineage differentiation and development

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Mitotic-exit networks with cytokinesis

Cytokinesis is the highly regulated process that physically separates daughter and mother cells in late mitosis. The mitotic-exit network (MEN), the signalling pathway that drives mitotic exit, directly regulates cytokinesis. Discover the latest research on mitotic-exit networks with cytokinesis here.

DNA Replication Origin

DNA replication is initiated as specific gene sequences, called origins, that function to start DNA replication. Pre-replication complexes are assembled at these origins during the G1 phase of the cell cycle. These sequences allow for targeted activation or deactivation of replication. Discover the latest research on DNA replication origins here.