Dec 1, 1975

Titration study of acetylated lysozyme

Journal of Biochemistry
T Okuda, S Sugai

Abstract

To study the interaction between carboxyl groups and amino groups in native lysozyme [EC 3.2.1.17], and to identify the positions and the pK values of the abnormal carboxyl groups, N-acetylated lysozyme was prepared. The acetylation did not affect the molecular shape of the enzyme, but changed six amino groups to a non-ionizable form, leaving one amino group free; this was determined to be Lys 33. In addition, pH titration of the acetylated lysozyme in 0.2 or 0.02 M KCl aqueous solution indicated fewer titratable groups with pK(int) of 7.8 or 10.4 compared with the native protein, though the number of titratable carboxyl groups was not affected by the acetylation. From the pH titration results and structural considerations, the unititratable carboxyl groups were suggested to be Asp 48, Asp 66, and Asp 87. On the other hand, spectrophotometric titration in 0.2 M KCl showed that all three tyrosine residues are titratable in the acetylated protein, although an abnormal tyrosine residue exists in the native state. Tyr 20 was suggested to be untitratable in the pH range of 8-12.6.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Optical Rotatory Dispersion
Egg Whites
Lysozyme Test
Plasma Protein Binding Capacity
Lysozyme
Peptide Fragments
Muramidase
Protein Acetylation
Protein Conformation
Hydrolase

About this Paper

Related Feeds

Bacterial Cell Wall Structure (ASM)

Bacterial cell walls are made of peptidoglycan (also called murein), which is made from polysaccharide chains cross-linked by unusual peptides containing D-amino acids. Here is the latest research on bacterial cell wall structures.

Bacterial Cell Wall Structure

Bacterial cell walls are made of peptidoglycan (also called murein), which is made from polysaccharide chains cross-linked by unusual peptides containing D-amino acids. Here is the latest research on bacterial cell wall structures.