Mar 31, 2020

Predicting cell-type-specific non-coding RNA transcription from genome sequence

BioRxiv : the Preprint Server for Biology
Aaron SteeleChikashi Terao


Transcription is regulated through complex mechanisms involving non-coding RNAs (ncRNAs). However, because transcription of ncRNAs, especially enhancer RNAs, is often low and cell type-specific, its dependency on genotype remains largely unexplored. Here, we developed mutation effect prediction on ncRNA transcription (MENTR), a quantitative machine learning framework reliably connecting genetic associations with expression of ncRNAs, resolved to the level of cell type. MENTR-predicted mutation effects on ncRNA transcription were concordant with estimates from previous genetic studies in a cell type-dependent manner. We inferred reliable causal variants from 41,223 GWAS variants, and proposed 7,775 enhancers and 3,548 long-ncRNAs as complex trait-associated ncRNAs in 348 major human primary cells and tissues, including plausible enhancer-mediated functional alterations in single-variant resolution in Crohn's disease. In summary, we present new resources for discovering causal variants, the biological mechanisms driving complex traits, and the sequence-dependency of ncRNA regulation in relevant cell types.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Nucleic Acid Sequencing
Comparative Genomic Analysis

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Related Papers

Journal of Integrative Bioinformatics
Peijing ZhangMing Chen
© 2020 Meta ULC. All rights reserved