DOI: 10.1101/231597Dec 11, 2017Paper

Tools for engineering coordinated system behaviour in synthetic microbial consortia

BioRxiv : the Preprint Server for Biology
Nicolas KylilisKaren M Polizzi

Abstract

Advancing synthetic biology to the multicellular level requires the development of multiple orthogonal cell-to-cell communication channels to propagate information with minimal signal interference. The development of quorum sensing devices, the cornerstone technology for building microbial communities with coordinated system behaviour, has largely focused on reducing signal leakage between systems of cognate AHL/transcription factor pairs. However, the use of non-cognate signals as a design feature has received limited attention so far. Here, we demonstrate the largest library of AHL-receiver devices constructed to date with all cognate and non-cognate chemical signal interactions quantified and we develop a software tool that allows automated selection of orthogonal chemical channels. We use this approach to identify up to four orthogonal channels in silico and experimentally demonstrate the simultaneous use of three channels in co-culture. The development of multiple non-interfering cell-to-cell communication channels will facilitate the design of synthetic microbial consortia for novel applications including distributed bio-computation, increased bioprocess efficiency, cell specialisation, and spatial organisation.

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.