Towards feedback control of the cell-cycle across a population of yeast cells

BioRxiv : the Preprint Server for Biology
Giansimone PerrinoDiego di Bernardo

Abstract

Cells are defined by their unique ability to self-replicate through cell division. This periodic process is known as the cell-cycle and it happens with a defined period in each cell. The budding yeast divides asymmetrically with a mother cell generating multiple daughter cells. Within the cell population each cell divides with the same period but asynchronously. Here, we investigate the problem of synchronising the cell-cycle across a population of yeast cells through a microfluidics-based feedback control platform. We propose a theoretical and experimental approach for cell-cycle control by considering a yeast strain that can be forced to start the cell-cycle by changing growth medium. The duration of the cell-cycle is strictly linked to the cell volume growth, hence a hard constraint in the controller design is to prevent excessive volume growth. We experimentally characterised the yeast strain and derived a simplified phase-oscillator model of the cell-cycle. We then designed and implemented three impulsive control strategies to achieve maximal synchronisation across the population and assessed their control performance by numerical simulations. The first two controllers are based on event-triggered strategies, while the thi...Continue Reading

Related Concepts

Cell Cycle
Cell Division
Virus Replication
Yeasts
Sleep, Slow-Wave
Simulation
Strategy
Population Group
MPC1

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

CZI Human Cell Atlas Seed Network

The aim of the Human Cell Atlas (HCA) is to build reference maps of all human cells in order to enhance our understanding of health and disease. The Seed Networks for the HCA project aims to bring together collaborators with different areas of expertise in order to facilitate the development of the HCA. Find the latest research from members of the HCA Seed Networks here.

Cell Cycle Modeling

Computational modeling and the theory of nonlinear dynamical systems allow one to not simply describe the events of the cell cycle, but also to understand why these events occur. Discover the latest research on cell cycle modeling here.