Jul 19, 2016

Towards robust evolutionary inference with integral projection models

BioRxiv : the Preprint Server for Biology
M J JaneiroM B Morrissey


Integral projection models (IPMs) are extremely flexible tools for ecological and evolutionary inference. IPMs track the full joint distribution of phenotype in populations through time, using functions describing phenotype-dependent development, inheritance, survival and fecundity. For evolutionary inference, two important features of any model are the ability to (i) characterize relationships among traits (including values of the same traits across age) within individuals, and (ii) characterize similarity between individuals and their descendants. In IPM analyses, the former depends on regressions of observed trait values at each age on values at the previous age (development functions), and the latter on regressions of offspring values at birth on parent values as adults (inheritance functions). We show analytically that development functions, characterized this way, will typically underestimate covariances of trait values across ages, due to compounding of regression to the mean across projection steps. Similarly, we show that inheritance, characterized this way, is inconsistent with a modern understanding of inheritance, and underestimates the degree to which relatives are phenotypically similar. Additionally, we show that...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Projection Defense Mechanism
Genetic Inheritance
Sheep, Bighorn
Disease Regression
Phenotype Determination
Intercept Substance
Population Group

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

© 2020 Meta ULC. All rights reserved