TP53 lacks tetramerization and N-terminal domains due to novel inactivating mutations detected in leukemia patients.

Journal of Cancer Research and Therapeutics
Yasir Hameed, Samina Ejaz


TP53 is a highly conserved tumor suppressor gene present on chromosome 17 and comprised 11 exons and 12 introns. The TP53 protein maintained the genomic integrity of the cell by regulating different pathways. The association of TP53 with leukemia and the increasing prevalence of leukemia in Pakistan instigated us to initiate the current study. The TP53 gene of acute myeloid leukemia patients (n = 23) and normal individuals (n = 30) was amplified through polymerase chain reaction (PCR). The PCR amplified products of 3 samples 1 normal (NC-30) and 2 cancerous (LK-6 and LK-19) were subjected to deoxyribonucleic acid (DNA) sequence analysis. Bioinformatics analysis of the obtained DNA sequences helped to identify nature, type, and functional impact of mutations, if any. Results revealed 2 novel mutations in Case No. 1 (c. G >A10987 and c. InsA13298_13299) and Case No. 2 (c. InsC13284_13285, c. T >A13365) which generate a premature codon (ocher) at position 239 and lead to truncated TP53 protein. In Case No. 3, 16 novel mutations were identified and c. delC11093 mutation created a premature codon (opal) at 59th position. Hence, the resultant protein will lack its tetramerization and N-terminal domain required for its normal function...Continue Reading


Mar 21, 2007·Environmental Health Perspectives·Siobhán M O'Connor, Roumiana S Boneva
Dec 23, 2008·Seminars in Hematology·Ching-Hon Pui
Jan 1, 2011·Cancers·Toshinori Ozaki, Akira Nakagawara
Jun 27, 2015·Seminars in Hematology·Christopher Simon Hourigan

❮ Previous
Next ❯

Related Concepts

Related Feeds

Acute Myeloid Leukemia

Acute myeloid leukemia (AML) is a clinically and genetically heterogeneous disease with approximately 20,000 cases per year in the United States. AML also accounts for 15-20% of all childhood acute leukemias, while it is responsible for more than half of the leukemic deaths in these patients. Here is the latest research on this disease.

AML: Role of LSD1 by CRISPR (Keystone)

Find the latest rersearrch on the ability of CRISPR-Cas9 mutagenesis to profile the interactions between lysine-specific histone demethylase 1 (LSD1) and chemical inhibitors in the context of acute myeloid leukemia (AML) here.