Dec 20, 2015

Transition between functional regimes in an integrate-and-fire network model of the thalamus

BioRxiv : the Preprint Server for Biology
Alessandro BarardiAlberto Mazzoni

Abstract

The thalamus is a key brain element in the processing of sensory information. During the sleep and awake states, this brain area is characterized by the presence of two distinct dynamical regimes: in the sleep state activity is dominated by spindle oscillations (7-15 Hz) weakly affected by external stimuli, while in the awake state the activity is primarily driven by external stimuli. Here we develop a simple and computationally efficient model of the thalamus that exhibits two dynamical regimes with different information-processing capabilities, and study the transition between them. The network model includes glutamatergic thalamocortical (TC) relay neurons and gabaergic reticular (RE) neurons described by adaptative integrate-and-fire models in which spikes are induced by either depolarization or hyperpolarization rebound. We found a range of connectivity conditions under which the thalamic network composed by these neurons displays the two aforementioned dynamical regimes. Our results show that TC-RE loops generate spindle-like oscillations and that a critical value of clustering in the RE-RE connections is necessary for the coexistence of the two regimes. We also observe that the transition between the two regimes occurs w...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Spindle
Cortex Bone Disorders
Adrenal Cortex Diseases
Reticular Dysgenesis
Neurons
Brain
Total cholesterol
Sensory Stimulation
Adaptation
Disease Transmission

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.