Apr 24, 2020

Co-expression analysis reveals interpretable gene modules controlled by trans-acting genetic variants

BioRxiv : the Preprint Server for Biology
L. KolbergKaur Alasoo


Developing novel therapies for complex disease requires better understanding of the causal processes that contribute to disease onset and progression. Although trans-acting gene expression quantitative trait loci (trans-eQTLs) can be a powerful approach to directly reveal cellular processes modulated by disease variants, detecting trans-eQTLs remains challenging due to their small effect sizes and large number of genes tested. However, if a single trans-eQTL controls a group of co-regulated genes, then multiple testing burden can be greatly reduced by summarising gene expression at the level of co-expression modules prior to trans-eQTL analysis. We analysed gene expression and genotype data from six blood cell types from 226 to 710 individuals. We inferred gene co-expression modules with five methods on the full dataset, as well as in each cell type separately. We detected a number of established co-expression module trans-eQTLs, such as the monocyte-specific associations at the IFNB1 and LYZ loci, as well as a platelet-specific ARHGEF3 locus associated with mean platelet volume. We also discovered a novel trans association near the SLC39A8 gene in LPS-stimulated monocytes. Here, we linked an early-response cis-eQTL of the SLC3...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Tricuspid Valve Insufficiency
Clinical Trials
Task Performance

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.