DOI: 10.1101/451666Oct 24, 2018Paper

Translational control of cardiac fibrosis

BioRxiv : the Preprint Server for Biology
Sonia ChothaniOwen JL Rackham


Background: Fibrosis is a common pathology in many cardiac disorders and is driven by the activation of resident fibroblasts. The global post-transcriptional mechanisms underlying fibroblast-to-myofibroblast conversion in the heart have not been explored. Methods: Genome-wide changes of RNA transcription and translation during human cardiac fibroblast activation were monitored with RNA sequencing and ribosome profiling. We then used miRNA- and RNA-binding protein-based analyses to identify translational regulators of fibrogenic genes. To reveal post-transcriptional mechanisms in the human fibrotic heart, we then integrated our findings with cardiac ribosome occupancy levels of 30 dilated cardiomyopathy patients. Results: We generated nucleotide-resolution translatome data during the TGFβ1-driven cellular transition of human cardiac fibroblasts to myofibroblasts. This identified dynamic changes of RNA transcription and translation at several time points during the fibrotic response, revealing transient and early-responder genes. Remarkably, about one-third of all changes in gene expression in activated fibroblasts are subject to translational regulation and dynamic variation in ribosome occupancy affects protein abundance indepe...Continue Reading

Related Concepts

Related Feeds


Cardiomyopathy is a disease of the heart muscle, that can lead to muscular or electrical dysfunction of the heart. It is often an irreversible disease that is associated with a poor prognosis. There are different causes and classifications of cardiomyopathies. Here are the latest discoveries pertaining to this disease.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.