Jun 12, 2010

Treatment with chlorous acid to inhibit spores of Alicyclobacillus acidoterrestris in aqueous suspension and on apples

Letters in Applied Microbiology
S-Y LeeD-H Kang

Abstract

To test the efficacy of a chemical (chlorous acid) for reducing the numbers of viable Alicyclobacillus acidoterrestris spores in laboratory media and on apples. Alicyclobacillus acidoterrestris spores in aqueous suspension and on apple surfaces of four different cultivars were treated with 268 ppm chlorous acid. Treatment with 268 ppm chlorous acid sharply reduced the numbers of spores of A. acidoterrestris in laboratory media by 1.6, 4.3, and 7.0 log(10) reductions for 5, 10, and 15 min treatments, respectively. Chlorous acid also effectively reduced the spore load on apple surfaces. Alicyclobacillus acidoterrestris spore counts were significantly reduced by about 5 log(10) after 10 min treatment on four different apple cultivars ('Red Delicious', 'Golden Delicious',' Gala', and 'Fuji'). There was no synergistic effect on spore reduction when chlorous acid treatment was combined with heat. These results show that chlorous acid is highly efficacious against A. acidoterrestris spores on apple surfaces. Chlorous acid can be used as an alternative sanitizer of chlorine to control a major A. acidoterrestris contamination source in juice processing plants.

  • References9
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Chloride Ion Level
IK gene
Virus Viability
Alicyclobacillus
Malus domestica
Spores, Bacterial
Reproduction Spores
GLA gene
Genus Malus
Plant spore

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.