Dec 26, 2018

Triplet CFTR modulators: future prospects for treatment of cystic fibrosis

Therapeutics and Clinical Risk Management
Nauman Chaudary


Cystic fibrosis (CF) is an autosomal recessive genetic disease characterized by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is a chloride channel responsible for ion flow across epithelial surfaces of lung, sinuses, pancreas, intestine, and liver. Researchers have grouped CFTR genetic mutations into various protein defects: reduced protein synthesis (class 1 mutations), abnormal protein folding and maturation (class 2 mutation), and abnormal gating (class 3 mutation). These mutations usually present as severe forms of CF due to complete absence of CFTR at cell surfaces. Milder forms (eg, protein maturation and conductance defects, classes 4-6) present as less severe forms of CF related to the presence of CFTR at the cell surface. Differences in severity are directly due to CFTR function which is based on the severity of CFTR mutation. This knowledge has proven useful for designing therapy for individual mutations and mutation classes. The discovery and US Food and Drug Administration approval of Kalydeco® (ivacaftor) in early 2011 marked the beginning of a new era of therapies that are focused on improving defective CFTR protein function. However, due to its specificity for the G551D mutati...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Biological Markers
Human Class I Antigens
Cystic-fibrosis Membrane-conductance-regulating Protein Activity
Cratoxylum formosum
MRNA Maturation
Action Potentials
Research Personnel

Related Feeds

CFTR Mutant Structural Therapy

Over 1700 different mutations in the CFTR genes have been shown to cause cystic fibrosis. Here is the latest research on structural therapy for CFTR mutants.