Mitochondrial Aurora kinase A induces mitophagy by interacting with MAP1LC3 and Prohibitin 2

BioRxiv : the Preprint Server for Biology
Giulia BertolinMarc Tramier


Epithelial and haematologic tumours often show the overexpression of the serine/threonine kinase AURKA. Recently, AURKA was shown to localise at mitochondria, where it regulates mitochondrial dynamics and ATP production. Here we define the molecular mechanisms of AURKA in regulating mitochondrial turnover by mitophagy. When overexpressed, AURKA induces the rupture of the Outer Mitochondrial Membrane in a proteasome-dependent manner. Then, AURKA triggers the degradation of Inner Mitochondrial Membrane (IMM)/matrix proteins by interacting with core components of the autophagy pathway. On the IMM, the kinase forms a tripartite complex with MAP1LC3 and the mitophagy receptor PHB2. This complex is necessary to trigger mitophagy in a PARK2/Parkin-independent manner. The formation of the tripartite complex is induced by the phosphorylation of PHB2 on Ser39, which is required for MAP1LC3 to interact with PHB2. Last, treatment with the PHB2 ligand Xanthohumol blocks AURKA-induced mitophagy by destabilising the tripartite complex. This treatment also restores normal ATP production levels. Altogether, these data provide evidence for a previously undetected role of AURKA in promoting mitophagy through the interaction with PHB2 and MAP1LC3....Continue Reading

Related Concepts

Physiologic Warmth
Mutant Proteins
TRPA1 gene
Aedes aegypti
Trpa1 protein, mouse

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.