May 7, 2019

Tunable Core-Shell Nanowire Active Material for High Capacity Li-Ion Battery Anodes Comprised of PECVD Deposited aSi on Directly Grown Ge Nanowires

ACS Applied Materials & Interfaces
Killian StokesKevin M Ryan

Abstract

Herein, we report the formation of core@shell nanowires (NWs) comprised of crystalline germanium NW cores with amorphous silicon shells (Ge@aSi) and their performance as a high capacity Li-ion battery anode material. The Ge NWs were synthesized directly from the current collector in a solvent vapor growth (SVG) system and used as hosts for the deposition of the Si shells via a plasma-enhanced chemical vapor deposition (PECVD) process utilizing an expanding thermal plasma (ETP) source. The secondary deposition allows for the preparation of Ge@aSi core@shell structures with tunable Ge/Si ratios (2:1 and 1:1) and superior gravimetric and areal capacities, relative to pure Ge. The binder-free anodes exhibited discharge capacities of up to 2066 mAh/g and retained capacities of 1455 mAh/g after 150 cycles (for the 1:1 ratio). The 2:1 ratio showed a minimal ∼5% fade in capacity between the 20th and 150th cycles. Ex situ microscopy revealed a complete restructuring of the active material to an interconnected Si1- xGe x morphology due to repeated lithiation and delithiation. In full-cell testing, a prelithiation step counteracted first cycle Li consumption and resulted in a 2-fold improvement to the capacity of the prelithiated cell ver...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Ions
Serum inhibited related protein I, human
Germanium
Microscopy
Plasma
Patient Discharge
ARHGAP9
Structure
Crystal Structure
Solvents

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.