Nov 21, 2000

Two-stage continuous process development for the production of medium-chain-length poly(3-hydroxyalkanoates)

Biotechnology and Bioengineering
K JungBernard Witholt

Abstract

Pseudomonas oleovorans forms medium-chain-length poly(3-hydroxyalkanoate) (PHA) most effectively at growth rates below the maximum specific growth rate. Under adequate conditions, PHA accumulates in inclusion bodies in cells up to levels higher than half of the cell mass, which is a time-consuming process. For PHA production, a two-stage continuous cultivation system with two fermentors connected in series is a potentially useful system. It offers production of cells at a specific growth rate in a first compartment at conditions that lead cells to generate PHA at higher rates in a second compartment, with a relatively long residence time. In such a system, dilution rates of 0.21 h(-1) in the first fermentor (D(1)) and 0.16 h(-1) in the second fermentor (D(2)) were found to yield the highest volumetric PHA productivity. Transient-state experiments allowed investigation of D(1) and D(2) over a wide dilution rate range at high resolution in time-saving experiments. Furthermore, the influence of temperature, pH, nutrient limitation, and carbon source on PHA productivity was investigated and results similar to optimum conditions in single-stage chemostat cultivations of P. oleovorans were found. With all culture parameters optimized...Continue Reading

Mentioned in this Paper

Alkanes
Pelger-Huet Anomaly
Polyesters
Inclusion Bodies
Pseudomonas oleovorans
Biotechnology
Anatomical Compartments
Fermentation
Medical Device Design
Pseudomonas

About this Paper

Related Feeds

Bioinformatics in Biomedicine

Bioinformatics in biomedicine incorporates computer science, biology, chemistry, medicine, mathematics and statistics. Discover the latest research on bioinformatics in biomedicine here.