Tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product induced by NGF
Abstract
Nerve growth factor (NGF) is a neurotrophic factor responsible for the differentiation and survival of sympathetic and sensory neurons as well as selective populations of cholinergic neurons. NGF binds to specific cell-surface receptors but the mechanism for transduction of the neurotrophic signal is unknown. Several experiments using the NGF-responsive pheochromocytoma cell line, PC12, have implicated tyrosine phosphorylation in NGF-mediated responses, although no NGF-specific tyrosine kinases have been identified. Here we show that NGF induces tyrosine phosphorylation and tyrosine kinase activity of the trk proto-oncogene product, a tyrosine kinase receptor whose expression is restricted in vivo to neurons of the sensory spinal and cranial ganglia of neural crest origin. Tyrosine phosphorylation of trk by NGF is rapid, specific and occurs with picomolar quantities of factor, indicating that the response is mediated by physiological amounts of NGF. Activation of the trk tyrosine kinase receptor provides a possible mechanism for signal transduction by NGF.
References
Citations
Reciprocal modulation of TrkA and p75NTR affinity states is mediated by direct receptor interactions
Regulation of nerve growth factor receptor gene expression in sympathetic neurons during development
Differential dependency of cutaneous mechanoreceptors on neurotrophins, trk receptors, and P75 LNGFR
Brain-derived neurotrophic factor promotes survival and chemoprotection of human neuroblastoma cells
A novel apoptotic pathway induced by nerve growth factor-mediated TrkA activation in medulloblastoma
Prevention of apoptotic neuronal death by GM1 ganglioside. Involvement of Trk neurotrophin receptors
Related Concepts
Trending Feeds
COVID-19
Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.
Synthetic Genetic Array Analysis
Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.
Congenital Hyperinsulinism
Congenital hyperinsulinism is caused by genetic mutations resulting in excess insulin secretion from beta cells of the pancreas. Here is the latest research.
Neural Activity: Imaging
Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.
Chronic Fatigue Syndrome
Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.
Epigenetic Memory
Epigenetic memory refers to the heritable genetic changes that are not explained by the DNA sequence. Find the latest research on epigenetic memory here.
Cell Atlas of the Human Eye
Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.
Femoral Neoplasms
Femoral Neoplasms are bone tumors that arise in the femur. Discover the latest research on femoral neoplasms here.
STING Receptor Agonists
Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.