Nov 9, 2018

Ultra-high field MRI reveals mood-related circuit disturbances in depression: A comparison between 3-Tesla and 7-Tesla

BioRxiv : the Preprint Server for Biology
Laurel MorrisJames W Murrough

Abstract

Ultra-high field 7-Tesla (7T) MRI has the potential to advance our understanding of neuropsychiatric disorders, including major depressive disorder (MDD). To date, few studies have quantified the advantage of resting state functional MRI (fMRI) at 7T compared to 3-Tesla (3T). We conducted a series of experiments that demonstrate the improvement in temporal signal-to-noise ratio (TSNR) of a multi-echo fMRI protocol with ultra-high field 7T, compared to 3T MRI in healthy controls (HC). We also directly tested the enhancement in ultra-high field 7T fMRI signal power by examining the ventral tegmental area (VTA), a small midbrain structure that is critical to the expected neuropathology of MDD but difficult to discern with standard 3T MRI. We demonstrate 200-300% improvement in TSNR and resting state functional connectivity coefficients provided by ultra-high field 7T fMRI compared to 3T, indicating enhanced power for detection of functional neural architecture. A multi-echo based acquisition protocol and signal denoising pipeline afforded greater gain in signal power at ultra-high field compared to classic acquisition and denoising pipelines. Furthermore, ultra-high field fMRI revealed mood-related neuro-circuit disturbances in pa...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
UGT1A7 wt Allele
Magnetic Resonance Imaging
biphasix-vaccine targeting adjuvant
Neural Stem Cells
3 Tesla Magnetic Resonance Imaging
Neuropathology
FMRI
VTA (Ventral Tegmental Area)
Major Depressive Disorder

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.