DOI: 10.1101/454520Oct 29, 2018Paper

Ultra-sensitive measurement of brain penetration with microscale probes for brain machine interface considerations

BioRxiv : the Preprint Server for Biology
Abdulmalik M. ObaidNicholas A Melosh


Microscale electrodes are rapidly becoming critical tools for neuroscience and brain-machine interfaces (BMIs) for their high spatial and temporal resolution. However, the mechanics of how devices on this scale insert into brain tissue is unknown, making it difficult to balance between larger probes with higher stiffness, or smaller probes with lower damage. Measurements have been experimentally challenging due to the large deformations, rapid events, and small forces involved. Here we modified a nanoindentation force measurement system to provide the first ultra-high resolution force, distance, and temporal recordings of brain penetration as a function of microwire diameter (7.5 μm to 100 μm) and tip geometry (flat, angled, and electrosharpened). Surprisingly, both penetration force and tissue compression scaled linearly with wire diameter, rather than cross-sectional area. Linear brain compression with wire diameter strongly suggest smaller probes will cause less tissue damage upon insertion, though unexpectedly no statistical difference was observed between angled and flat tipped probes. These first of their kind measurements provide a mechanical framework for designing effective microprobe geometries while limiting mechanic...Continue Reading

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Related Papers

Proceedings of the National Academy of Sciences of the United States of America
Prashant Nair
Nature Nanotechnology
Edward W KeeferGuenter W Gross
Frontiers in Neuroengineering
Harbaljit S SohalStuart N Baker
© 2021 Meta ULC. All rights reserved