Ultrasound Segmentation of Rat Hearts Using Convolution Neural Networks

Proceedings of SPIE
James D DormerBaowei Fei


Ultrasound is widely used for diagnosing cardiovascular diseases. However, estimates such as left ventricle volume currently require manual segmentation, which can be time consuming. In addition, cardiac ultrasound is often complicated by imaging artifacts such as shadowing and mirror images, making it difficult for simple intensity-based automated segmentation methods. In this work, we use convolutional neural networks (CNNs) to segment ultrasound images of rat hearts embedded in agar phantoms into four classes: background, myocardium, left ventricle cavity, and right ventricle cavity. We also explore how the inclusion of a single diseased heart changes the results in a small dataset. We found an average overall segmentation accuracy of 70.0% ± 7.3% when combining the healthy and diseased data, compared to 72.4% ± 6.6% for just the healthy hearts. This work suggests that including diseased hearts with healthy hearts in training data could improve segmentation results, while testing a diseased heart with a model trained on healthy hearts can produce accurate segmentation results for some classes but not others. More data are needed in order to improve the accuracy of the CNN based segmentation.

Related Concepts

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Spatio-Temporal Regulation of DNA Repair

DNA repair is a complex process regulated by several different classes of enzymes, including ligases, endonucleases, and polymerases. This feed focuses on the spatial and temporal regulation that accompanies DNA damage signaling and repair enzymes and processes.

Glut1 Deficiency

Glut1 deficiency, an autosomal dominant, genetic metabolic disorder associated with a deficiency of GLUT1, the protein that transports glucose across the blood brain barrier, is characterized by mental and motor developmental delays and infantile seizures. Follow the latest research on Glut1 deficiency with this feed.

Hereditary Sensory Autonomic Neuropathy

Hereditary Sensory Autonomic Neuropathies are a group of inherited neurodegenerative disorders characterized clinically by loss of sensation and autonomic dysfunction. Here is the latest research on these neuropathies.

Separation Anxiety

Separation anxiety is a type of anxiety disorder that involves excessive distress and anxiety with separation. This may include separation from places or people to which they have a strong emotional connection with. It often affects children more than adults. Here is the latest research on separation anxiety.

Neural Activity: Imaging

Imaging of neural activity in vivo has developed rapidly recently with the advancement of fluorescence microscopy, including new applications using miniaturized microscopes (miniscopes). This feed follows the progress in this growing field.

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.