Apr 28, 2020

Microsaccades during high speed continuous visual search

BioRxiv : the Preprint Server for Biology
Jacob G. MartinS. J. Thorpe

Abstract

Here, we provide an analysis of the microsaccades that occurred during continuous visual search and targeting of small faces that we pasted either into cluttered background photos or into a simple gray background. Subjects continuously used their eyes to target singular 3-degree upright or inverted faces in changing scenes. As soon as the participant's gaze reached the target face, a new face was displayed in a different and random location. Regardless of the experimental context (e.g. background scene, no background scene), or target eccentricity (from 4 to 20 degrees of visual angle), we found that the microsaccade rate dropped to near zero levels within only 12 milliseconds after trial onset. There were almost never any microsaccades before the saccade to the face. One subject completed 118 consecutive trials without a single microsaccade. However, in about 20% of the trials, there was a single corrective microsaccade that occurred almost immediately after the preceding saccade's offset. These corrective microsaccades were task oriented because their facial landmark targeting distributions matched those of saccades within both the upright and inverted face conditions. Our findings show that a single feedforward pass through ...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Entire Head
Neurons
Spatial Distribution
Enzyme Uncoupling
Face
Problems With Head
Retrosplenial Area
Structure of Cortex of Kidney
Subcortical
Direction

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.