Apr 27, 2020

Cooperative stator assembly of bacterial flagellar motor for autonomous torque regulation

BioRxiv : the Preprint Server for Biology
K. I. ItoShoichi Toyabe


Cooperativity has a central place in biological regulation, providing robust and highly-sensitive regulation. The bacterial flagellar motor (BFM) implements autonomous torque regulation by the nonequilibrium structure of the stators; the stators assemble at high load and disperse at low load. It would be natural to suppose that the stator packing is affected by stator-stator interaction. However, the cooperativity among the stators has rarely been explored. Here, we evaluated the energetics and kinetics of the stator assembly by combining dynamic load control of a single motor and the trajectory analysis based on statistical mechanics. We demonstrate that the BFM exploits the dynamic cooperativity of the stator binding for the autonomous torque regulation. The cooperative assembly leads to a discontinuous phase transition and hysteresis, which may implement torque regulation with high sensitivity and robustness.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Recombination, Genetic
Genetic Inheritance
Cellular Component Organization

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.