PMID: 2370851Jul 1, 1990Paper

Unique role of oxygen in regulation of hepatic monooxygenation and glucuronidation

Molecular Pharmacology
Y R WuR G Thurman

Abstract

The purpose of this study was to evaluate the hypothesis that NADPH supply in intact cells is regulated by oxygen tension. This was accomplished by studying monooxygenation in perfused livers from Ah locus-responsive C57BL/6J mice, where rates of monooxygenation are high. Elevation of flow rate decreases the hepatic O2 gradient and increases O2 delivery to the organ. Under these conditions, rates of p-nitroanisole O-demethylation were 2-3 times higher in perfused livers from fed or fasted mice at high (10 ml/min) compared with normal (5 ml/min) flow rates. Rates of monooxygenation were directly proportional to oxygen tension (half-maximal rates occurred with approximately 400 microM O2). On the other hand, rates were independent of oxygen concentration in isolated microsomes where NADPH was supplied in excess. The decrease in rate due to diminished O2 concentration in the intact organ could not be attributed to hypoxia, because O2 tension in the effluent perfusate exceeded 50 microM even when influent perfusate was saturated with 25% O2 and ATP/ADP ratios were in the normal range. Thus, monooxygenation of p-nitroanisole in perfused mouse liver is dependent on oxygen tension. Similarly, glucuronidation of p-nitrophenol was oxyge...Continue Reading

Related Concepts

4-nitroanisole
Anisoles
Glucuronic Acids
Liver
Mice, Inbred C57BL
NADP
Dioxygen
Perfusion

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Evolution of Pluripotency

Pluripotency refers to the ability of a cell to develop into three primary germ cell layers of the embryo. This feed focuses on the mechanisms that underlie the evolution of pluripotency. Here is the latest research.

Lipidomics & Rhinovirus Infection

Lipidomics can be used to examine the lipid species involved with pathogenic conditions, such as viral associated inflammation. Discovered the latest research on Lipidomics & Rhinovirus Infection.

Alzheimer's Disease: MS4A

Variants within the membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease in genome-wide association studies. Here is the latest research on Alzheimer's disease and MS4A.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Torsion Dystonia

Torsion dystonia is a movement disorder characterized by loss of control of voluntary movements appearing as sustained muscle contractions and/or abnormal postures. Here is the latest research.

Generating Insulin-Secreting Cells

Reprogramming cells or using induced pluripotent stem cells to generate insulin-secreting cells has significant therapeutic implications for diabetics. Here is the latest research on generation of insulin-secreting cells.

Central Pontine Myelinolysis

Central Pontine Myelinolysis is a neurologic disorder caused most frequently by rapid correction of hyponatremia and is characterized by demyelination that affects the central portion of the base of the pons. Here is the latest research on this disease.

Epigenome Editing

Epigenome editing is the directed modification of epigenetic marks on chromatin at specified loci. This tool has many applications in research as well as in the clinic. Find the latest research on epigenome editing here.