Nov 2, 2018

Universal nature of collapsibility in the context of protein folding and evolution

BioRxiv : the Preprint Server for Biology
Dave ThirumalaiGovardhan Reddy

Abstract

Theory and simulations predicted sometime ago that the sizes of unfolded states of globular proteins should decrease continuously as the denaturant concentration is shifted from a high to a low value. However, small angle X-ray scattering (SAXS) data were used to assert the opposite, while interpretation of single molecule Forster resonance energy transfer experiments (FRET) supported the theoretical predictions. The disagreement between the two experiments is the SAXS-FRET controversy. By harnessing recent advances in SAXS and FRET experiments and setting these findings in the context of a general theory and simulations, we establish that compaction of unfolded states is universal. The theory also predicts that proteins rich in β-sheets are more collapsible than α-helical proteins. Because the extent of compaction is small, experiments have to be accurate and their interpretations should be as model free as possible. Theory also suggests that collapsibility itself could be a physical restriction on the evolution of foldable sequences, and provides a physical basis for the origin of multi-domain proteins.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Size
Small Angle X Ray Scattering
Plain X-ray
Globular protein
Opposite
Radiographic Imaging Procedure
Simulation
Protein Folding
Fluorescence Resonance Energy Transfer
SAXS

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.